To realize the robust control of multirotor unmanned aerial vehicle (UAV) systems, adaptive multilayer neural dynamics (AMND) controllers are proposed and analyzed. The proposed AMND controllers with the strong anti-perturbation… Click to show full abstract
To realize the robust control of multirotor unmanned aerial vehicle (UAV) systems, adaptive multilayer neural dynamics (AMND) controllers are proposed and analyzed. The proposed AMND controllers with the strong anti-perturbation property can drive multirotor UAVs to track time-varying tasks and deal with parameter uncertainty problems. First, the design method of the general multilayer neural dynamics (MLND) controllers is introduced and analyzed. Second, based on the design method, the attitude angles, height, and position controllers of a UAV system are designed. Third, according to the adaptive control theory, a novel AMND controller is designed, which can self-tune the parameters of the UAV. Finally, the proposed AMND method applies to a real-world hexrotor UAV system to illustrate its reliability. Mathematical analysis, computer simulations, and experiments verify the reliability, stability, and effectiveness of the proposed controllers which are used to track time-varying tasks.
               
Click one of the above tabs to view related content.