LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Two-Stage Supervised Discrete Hashing for Cross-Modal Retrieval

Photo from wikipedia

Recently, hashing-based multimodal learning systems have received increasing attention due to their query efficiency and parsimonious storage costs. However, impeded by the quantization loss caused by numerical optimization, the existing… Click to show full abstract

Recently, hashing-based multimodal learning systems have received increasing attention due to their query efficiency and parsimonious storage costs. However, impeded by the quantization loss caused by numerical optimization, the existing cross-media hashing approaches are unable to capture all the discriminative information present in the original multimodal data. Besides, most cross-modal methods belong to the one-step paradigm, which learn the binary codes and hash function simultaneously, increasing the complexity of optimization. To address these issues, we propose a novel two-stage approach, named the two-stage supervised discrete hashing (TSDH) method. In particular, in the first phase, TSDH generates a latent representation for each modality. These representations are then mapped to a common Hamming space to generate the binary codes. In addition, TSDH directly endows the hash codes with the semantic labels, enhancing the discriminatory power of the learned binary codes. A discrete hash optimization approach is developed to learn the binary codes without relaxation, avoiding the large quantization loss. The proposed hash function learning scheme reuses the semantic information contained by the embeddings, endowing the hash functions with enhanced discriminability. Extensive experiments on several databases demonstrate the effectiveness of the developed TSDH, outperforming several recent competitive cross-media algorithms.

Keywords: cross modal; two stage; stage supervised; binary codes; cross

Journal Title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.