LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adjacent Feature Propagation Network (AFPNet) for Real-Time Semantic Segmentation

Photo from wikipedia

With the development of deep learning, semantic segmentation has received considerable attention within the robotics community. For semantic segmentation to be applied to mobile robots or autonomous vehicles, real-time processing… Click to show full abstract

With the development of deep learning, semantic segmentation has received considerable attention within the robotics community. For semantic segmentation to be applied to mobile robots or autonomous vehicles, real-time processing is essential. In this article, a new real-time semantic segmentation network, called the adjacent feature propagation network (AFPNet), is proposed to achieve high performance and fast inference. AFPNet executes in real time on a commercial embedded GPU. The network includes two new modules. The local memory module (LMM) is the first; it improves the upsampling accuracy by propagating the high-level features to the adjacent grids. The cascaded pyramid pooling module (CPPM) is the second; it reduces computational time by changing the structure of the pyramid pooling module. Using these two modules, the proposed AFPNet achieved 76.4% mean intersection-over-union on the Cityscapes test dataset, outperforming other real-time semantic segmentation networks. Furthermore, AFPNet was successfully deployed on an embedded board Jetson AGX Xavier and applied to the real-world navigation of a mobile robot, proving that AFPNet can be effectively used in a variety of real-time applications.

Keywords: network; time; time semantic; real time; semantic segmentation

Journal Title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.