LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Blind Identification of Graph Filters

Network processes are often represented as signals defined on the vertices of a graph. To untangle the latent structure of such signals, one can view them as outputs of linear… Click to show full abstract

Network processes are often represented as signals defined on the vertices of a graph. To untangle the latent structure of such signals, one can view them as outputs of linear graph filters modeling underlying network dynamics. This paper deals with the problem of joint identification of a graph filter and its input signal, thus broadening the scope of classical blind deconvolution of temporal and spatial signals to the less-structured graph domain. Given a graph signal y modeled as the output of a graph filter, the goal is to recover the vector of filter coefficients h, and the input signal x which is assumed to be sparse. While y is a bilinear function of x and h, the filtered graph signal is also a linear combination of the entries of the lifted rank-one, row-sparse matrix xhT. The blind graph-filter identification problem can thus be tackled via rank and sparsity minimization subject to linear constraints, an inverse problem amenable to convex relaxations offering provable recovery guarantees under simplifying assumptions. Numerical tests using both synthetic and real-world networks illustrate the merits of the proposed algorithms, as well as the benefits of leveraging multiple signals to aid the blind identification task.

Keywords: blind identification; identification graph; graph; filter; identification; graph filters

Journal Title: IEEE Transactions on Signal Processing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.