LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

FDD Massive MIMO Channel Estimation With Arbitrary 2D-Array Geometry

This paper addresses the problem of downlink channel estimation in frequency-division duplexing massive multiple-input multiple-output systems. The existing methods usually exploit hidden sparsity under a discrete Fourier transform (DFT) basis… Click to show full abstract

This paper addresses the problem of downlink channel estimation in frequency-division duplexing massive multiple-input multiple-output systems. The existing methods usually exploit hidden sparsity under a discrete Fourier transform (DFT) basis to estimate the downlink channel. However, there are at least two shortcomings of these DFT-based methods: first, they are applicable to uniform linear arrays (ULAs) only, since the DFT basis requires a special structure of ULAs; and second, they always suffer from a performance loss due to the leakage of energy over some DFT bins. To deal with the above-mentioned shortcomings, we introduce an off-grid model for downlink channel sparse representation with arbitrary two-dimensional-array antenna geometry, and propose an efficient sparse Bayesian learning approach for the sparse channel recovery and off-grid refinement. The main idea of the proposed off-grid method is to consider the sampled grid points as adjustable parameters. Utilizing an in-exact block majorization–minimization algorithm, the grid points are refined iteratively to minimize the off-grid gap. Finally, we further extend the solution to uplink-aided channel estimation by exploiting the angular reciprocity between downlink and uplink channels, which brings enhanced recovery performance.

Keywords: array; downlink channel; channel estimation; channel; geometry

Journal Title: IEEE Transactions on Signal Processing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.