LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Low-Latency Multiuser Two-Way Wireless Relaying for Spectral and Energy Efficiencies

Photo from wikipedia

This paper considers two possible approaches, which enable multiple pairs of users to exchange information via multiple multiantenna relays within one time-slot to save communication bandwidth in low-latency communications. The… Click to show full abstract

This paper considers two possible approaches, which enable multiple pairs of users to exchange information via multiple multiantenna relays within one time-slot to save communication bandwidth in low-latency communications. The first approach is to deploy full-duplexes for both users and relays to make their simultaneous signal transmission and reception possible. In the second approach, the users use a fraction of a time slot to send their information to the relays and the relays use the remaining complementary fraction of the time slot to send the beamformed signals to the users. The inherent loop self-interference in the duplexes and inter-full-duplexing-user interference in the first approach are absent in the second approach. Under both these approaches, the joint design of the users’ power allocation and relays’ beamformers to either optimize the users’ exchange of information or maximize the energy-efficiency subject to user quality-of-service (QoS) constraints in terms of minimal rate thresholds leads to complex nonconvex optimization problems. Path-following algorithms are developed for their computational solutions. Numerical examples show the advantages of the second approach over the first approach.

Keywords: latency; energy; time slot; second approach; low latency; first approach

Journal Title: IEEE Transactions on Signal Processing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.