Recovering a sparse signal from its low-pass projections in the Fourier domain is a problem of broad interest in science and engineering and is commonly referred to as super resolution.… Click to show full abstract
Recovering a sparse signal from its low-pass projections in the Fourier domain is a problem of broad interest in science and engineering and is commonly referred to as super resolution. In many cases, however, Fourier domain may not be the natural choice. For example, in holography, low-pass projections of sparse signals are obtained in the Fresnel domain. Similarly, time-varying system identification relies on low-pass projections on the space of linear frequency modulated signals. In this paper, we study the recovery of sparse signals from low-pass projections in the Special Affine Fourier Transform domain (SAFT). The SAFT parametrically generalizes a number of well-known unitary transformations that are used in signal processing and optics. In analogy to the Shannon's sampling framework, we specify sampling theorems for recovery of sparse signals considering three specific cases: 1) sampling with arbitrary, bandlimited kernels, 2) sampling with smooth, time-limited kernels, and 3) recovery from Gabor transform measurements linked with the SAFT domain. Our work offers a unifying perspective on the sparse sampling problem which is compatible with the Fourier, Fresnel, and Fractional Fourier domain-based results. In deriving our results, we introduce the SAFT series (analogous to the Fourier series) and the short-time SAFT, and study convolution theorems that establish a convolution–multiplication property in the SAFT domain.
               
Click one of the above tabs to view related content.