LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sampling and Super Resolution of Sparse Signals Beyond the Fourier Domain

Photo by lureofadventure from unsplash

Recovering a sparse signal from its low-pass projections in the Fourier domain is a problem of broad interest in science and engineering and is commonly referred to as super resolution.… Click to show full abstract

Recovering a sparse signal from its low-pass projections in the Fourier domain is a problem of broad interest in science and engineering and is commonly referred to as super resolution. In many cases, however, Fourier domain may not be the natural choice. For example, in holography, low-pass projections of sparse signals are obtained in the Fresnel domain. Similarly, time-varying system identification relies on low-pass projections on the space of linear frequency modulated signals. In this paper, we study the recovery of sparse signals from low-pass projections in the Special Affine Fourier Transform domain (SAFT). The SAFT parametrically generalizes a number of well-known unitary transformations that are used in signal processing and optics. In analogy to the Shannon's sampling framework, we specify sampling theorems for recovery of sparse signals considering three specific cases: 1) sampling with arbitrary, bandlimited kernels, 2) sampling with smooth, time-limited kernels, and 3) recovery from Gabor transform measurements linked with the SAFT domain. Our work offers a unifying perspective on the sparse sampling problem which is compatible with the Fourier, Fresnel, and Fractional Fourier domain-based results. In deriving our results, we introduce the SAFT series (analogous to the Fourier series) and the short-time SAFT, and study convolution theorems that establish a convolution–multiplication property in the SAFT domain.

Keywords: saft; sparse signals; low pass; domain; fourier domain

Journal Title: IEEE Transactions on Signal Processing
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.