Orthogonal time frequency space (OTFS) modulation outperforms orthogonal frequency division multiplexing (OFDM) in high-mobility scenarios. One challenge for OTFS massive MIMO is downlink channel estimation due to the large number… Click to show full abstract
Orthogonal time frequency space (OTFS) modulation outperforms orthogonal frequency division multiplexing (OFDM) in high-mobility scenarios. One challenge for OTFS massive MIMO is downlink channel estimation due to the large number of base station antennas. In this paper, we propose a 3D-structured orthogonal matching pursuit algorithm based channel estimation technique to solve this problem. First, we show that the OTFS MIMO channel exhibits 3D-structured sparsity: normal sparsity along the delay dimension, block sparsity along the Doppler dimension, and burst sparsity along the angle dimension. Based on the 3D-structured channel sparsity, we then formulate the downlink channel estimation problem as a sparse signal recovery problem. Simulation results show that the proposed algorithm can achieve accurate channel state information with low pilot overhead.
               
Click one of the above tabs to view related content.