LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Solution for Large-Scale Multi-Object Tracking

A large-scale multi-object tracker based on the generalised labeled multi-Bernoulli (GLMB) filter is proposed. The algorithm is capable of tracking a very large, unknown and time-varying number of objects simultaneously,… Click to show full abstract

A large-scale multi-object tracker based on the generalised labeled multi-Bernoulli (GLMB) filter is proposed. The algorithm is capable of tracking a very large, unknown and time-varying number of objects simultaneously, in the presence of a high number of false alarms, as well as missed detections and measurement origin uncertainty due to closely spaced objects. The algorithm is demonstrated on a simulated tracking scenario, where the peak number objects appearing simultaneously exceeds one million. Additionally, we introduce a new method of applying the optimal sub-pattern assignment (OSPA) metric to determine a meaningful distance between two sets of tracks. We also develop an efficient strategy for its exact computation in large-scale scenarios to evaluate the performance of the proposed tracker.

Keywords: large scale; solution large; multi object; scale multi

Journal Title: IEEE Transactions on Signal Processing
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.