LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles.
Sign Up to like articles & get recommendations!
Robust Semiparametric Efficient Estimators in Complex Elliptically Symmetric Distributions
Covariance matrices play a major role in statistics, signal processing and machine learning applications. This paper focuses on the semiparametric covariance/scatter matrix estimation problem in elliptical distributions. The class of… Click to show full abstract
Covariance matrices play a major role in statistics, signal processing and machine learning applications. This paper focuses on the semiparametric covariance/scatter matrix estimation problem in elliptical distributions. The class of elliptical distributions can be seen as a semiparametric model where the finite-dimensional vector of interest is given by the location vector and by the (vectorized) covariance/scatter matrix, while the density generator represents an infinite-dimensional nuisance function. The main aim of this work is then to provide possible estimators of the finite-dimensional parameter vector able to reconcile the two dichotomic concepts of robustness and (semiparametric) efficiency. An $R$-estimator satisfying these requirements has been recently proposed by Hallin, Oja and Paindaveine for real-valued elliptical data by exploiting the Le Cam's theory of one-step efficient estimators and the rank-based statistics. In this paper, we firstly recall the building blocks underlying the derivation of such real-valued $R$-estimator, then its extension to complex-valued data is proposed. Moreover, through numerical simulations, its estimation performance and robustness to outliers are investigated in a finite-sample regime.
Share on Social Media:
  
        
        
        
Sign Up to like & get recommendations! 0
Related content
More Information
            
News
            
Social Media
            
Video
            
Recommended
               
Click one of the above tabs to view related content.