LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ordered Reliability Bits Guessing Random Additive Noise Decoding

Photo by efekurnaz from unsplash

Error correction techniques traditionally focus on the co-design of restricted code-structures in tandem with code-specific decoders that are computationally efficient when decoding long codes in hardware. Modern applications are, however,… Click to show full abstract

Error correction techniques traditionally focus on the co-design of restricted code-structures in tandem with code-specific decoders that are computationally efficient when decoding long codes in hardware. Modern applications are, however, driving demand for ultra-reliable low-latency communications (URLLC), rekindling interest in the performance of shorter, higher-rate error correcting codes, and raising the possibility of revisiting universal, code-agnostic decoders. To that end, here we introduce a soft-detection variant of Guessing Random Additive Noise Decoding (GRAND) called Ordered Reliability Bits GRAND that can accurately decode any moderate redundancy block-code. It is designed with efficient circuit implementation in mind, and determines accurate decodings while retaining the original hard detection GRAND algorithm's suitability for a highly parallelized implementation in hardware. ORBGRAND is shown to provide excellent soft decision block error performance for codes of distinct classes (BCH, CA-Polar and RLC) with modest complexity, while providing better block error rate performance than CA-SCL, a state of the art soft detection CA-Polar decoder. ORBGRAND offers the possibility of an accurate, energy efficient soft detection decoder suitable for delivering URLLC in a single hardware realization.

Keywords: ordered reliability; guessing random; additive noise; random additive; reliability bits; noise decoding

Journal Title: IEEE Transactions on Signal Processing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.