LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Blind Goal-Oriented Massive Access for Future Wireless Networks

Photo from wikipedia

Emerging communication networks are envisioned to support massive wireless connectivity of heterogeneous devices with sporadic traffic and diverse requirements in terms of latency, reliability, and bandwidth. Providing multiple access to… Click to show full abstract

Emerging communication networks are envisioned to support massive wireless connectivity of heterogeneous devices with sporadic traffic and diverse requirements in terms of latency, reliability, and bandwidth. Providing multiple access to an increasing number of uncoordinated users and sharing the limited resources become essential in this context. In this work, we revisit the random access (RA) problem and exploit the continuous angular group sparsity feature of wireless channels to propose a novel RA strategy that provides low latency, high reliability, and massive access with limited bandwidth resources in an all-in-one package. To this end, we first design a reconstruction-free goal-oriented optimization problem, which only preserves the angular information required to identify the active devices. To solve this, we propose an alternating direction method of multipliers (ADMM) and derive closed-form expressions for each ADMM step. Then, we design a clustering algorithm that assigns the users in specific groups from which we can identify active stationary devices by their line of sight (LoS) angles. For mobile devices, we propose an alternating minimization algorithm to recover their data and their channel gains simultaneously, which allows us to identify active mobile users. Simulation results show significant performance gains in terms of active user detection and false alarm probabilities as compared to state-of-the-art RA schemes, even with limited number of preambles. Moreover, unlike prior work, the performance of the proposed blind goal-oriented massive access does not depend on the number of devices.

Keywords: goal oriented; wireless; massive access; blind goal; access

Journal Title: IEEE Transactions on Signal Processing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.