LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Iterative Difference Hard-Thresholding Algorithm for Sparse Signal Recovery

Photo by ldxcreative from unsplash

In this paper, a nonconvex surrogate function, namely, Laplace norm, is studied to recover the sparse signals. Firstly, we discuss the equivalence of the optimal solutions of $l_{0}$-norm minimization problem,… Click to show full abstract

In this paper, a nonconvex surrogate function, namely, Laplace norm, is studied to recover the sparse signals. Firstly, we discuss the equivalence of the optimal solutions of $l_{0}$-norm minimization problem, Laplace norm minimization problem and regularization Laplace norm minimization problem. It is proved that the $l_{0}$-norm minimization problem can be solved by solving the regularization Laplace norm minimization problem if the certain conditions are satisfied. Secondly, an iterative difference hard-thresholding algorithm and its adaptive version algorithm are proposed to solve the regularization Laplace norm minimization problem. Finally, we provide some numerical experiments to test the performance of the adaptive iterative difference hard-thresholding algorithm, and the numerical results show that the adaptive iterative difference hard-thresholding algorithm performs better than some state-of-art methods in recovering the sparse signals.

Keywords: thresholding algorithm; hard thresholding; difference hard; minimization problem; norm minimization; iterative difference

Journal Title: IEEE Transactions on Signal Processing
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.