Unmanaged cell inconsistency may cause accelerated battery degradation or even thermal runaway accidents in electric vehicles (EVs). Accurate cell inconsistency evaluation is a prerequisite for efficient battery health management to… Click to show full abstract
Unmanaged cell inconsistency may cause accelerated battery degradation or even thermal runaway accidents in electric vehicles (EVs). Accurate cell inconsistency evaluation is a prerequisite for efficient battery health management to maintain safe and reliable operation and is also vital for battery second-life utilization. This article presents a cell inconsistency evaluation model for series-connected battery systems based on real-world EV operation data. The open-circuit voltage (OCV), internal resistance, and charging voltage curve are extracted as consistency indicators (CIs) from a large volume of electric taxis’ operation data. The Thevenin equivalent circuit model is adopted to delineate battery dynamics, and an adaptive forgetting factor recursive least-squares method is proposed to reduce the fluctuation phenomenon in model parameter identification. With a modified robust regression method, the evolution characteristics of the three CIs are analyzed. The Mahalanobis distance in combination with the density-based spatial clustering of applications with noise is employed to comprehensively evaluate the multiparameter inconsistency state of a battery system based on the CIs. The results show that the proposed method can effectively assess cell inconsistency with high robustness and is competent for real-world applications.
               
Click one of the above tabs to view related content.