Many emerging applications in the terahertz (THz) frequency range demand highly sensitive, broadband detectors for room-temperature operation. Field-effect transistors with integrated antennas for THz detection (TeraFETs) have proven to meet… Click to show full abstract
Many emerging applications in the terahertz (THz) frequency range demand highly sensitive, broadband detectors for room-temperature operation. Field-effect transistors with integrated antennas for THz detection (TeraFETs) have proven to meet these requirements, at the same time offering great potential for scalability, high-speed operation, and functional integrability. In this contribution, we report on an optimized field-effect transistor with integrated broadband bow-tie antenna for THz detection (bow-tie TeraFET) and compare the detector's performance to other state-of-the-art broadband THz detector technologies. Implemented in a recently developed AlGaN/GaN MMIC process, the presented TeraFET shows a more than twice performance improvement compared to previously fabricated AlGaN/GaN-HEMT-based TeraFETs. The detector design is the result of detailed modeling of the plasma-wave-based detection principle embedded in a full-device detector model to account for power coupling of the THz radiation to the intrinsic gated FET channel. The model considers parasitic circuit elements as well as the high-frequency impedance of the integrated broadband antenna, and also includes optical losses from a silicon substrate lens. Calibrated characterization measurements have been performed at room temperature between 490 and 645 GHz, where we find values of the optical (total beam power referenced) noise-equivalent power of 25 and ${\text{31 pW}}/\surd{\text{Hz}}$ at 504 and 600 GHz, respectively, in good agreement with simulation results. We then show the broadband detection capability of our AlGaN/GaN detectors in the range from 0.2 to 1.2 THz and compare the TeraFETs’ signal-to-noise ratio to that of a Golay cell and a photomixer. Finally, we demonstrate an imaging application in reflection geometry at 504 GHz and determine a dynamic range of >40 dB.
               
Click one of the above tabs to view related content.