This article presents measurements of the permittivity of gelatin hydrogels between 220 and 330 GHz. Hydrated gelatin was treated as a binary mixture of free water and a compound consisting… Click to show full abstract
This article presents measurements of the permittivity of gelatin hydrogels between 220 and 330 GHz. Hydrated gelatin was treated as a binary mixture of free water and a compound consisting of water bound to collagen. Submillimeter-wave reflectometry was used to estimate the hydrated gelatin permittivity, hydrated gelatin density, and free-water volume fraction in phantoms composed of 62, 67, 72, and 77% water by weight. A hydrated dry/wet density ratio of 0.335 was validated with optical-coherence tomography. A constant nonfreezing bound-water mass of 0.6 g/g was observed and confirmed with differential-scanning calorimetry. Good agreement between results from different modalities supports the dielectric spectroscopy methods and data analysis. Depending on the hydrodynamics at the sample/air interface, measurements indicate a bound-water compound permittivity of 3.77−j2.52 to 3.95−j2.49—contrasting the pure-water average permittivity of 5.16–j5.63. The loss related to bound water was much higher than anticipated and characterization will help reduce uncertainty in measurements of gelatin hydrogel-based tissue phantoms; particularly corneal phantoms where adjacent free water creates complex hydration gradients. This is the first known, submillimeter-wave, frequency domain measurement of complex permittivity of the bound-water component in solid, proteinaceous matter.
               
Click one of the above tabs to view related content.