LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Comparative Analysis of CMUT Receiving Architectures for the Design Optimization of Integrated Transceiver Front Ends

Photo from wikipedia

A formal comparison between fundamental RX amplifier configurations for capacitive micromachined ultrasonic transducers (CMUTs) is proposed in this paper. The impact on both RX and the pulse-echo frequency response and… Click to show full abstract

A formal comparison between fundamental RX amplifier configurations for capacitive micromachined ultrasonic transducers (CMUTs) is proposed in this paper. The impact on both RX and the pulse-echo frequency response and on the output SNR is thoroughly analyzed and discussed. It is shown that the resistive-feedback amplifier yields a bandpass RX frequency response, while both open-loop voltage and capacitive-feedback amplifiers exhibit a low-pass frequency response. For a given power dissipation, it is formally proved that a capacitive-feedback amplifier provides a remarkable SNR improvement against the commonly adopted resistive feedback stage, achieved at the expense of a reduced pulse-echo center frequency, making its use convenient in low-frequency and midfrequency ultrasound imaging applications. The advantage mostly comes from a much lower noise contributed by the active devices, especially with low- $Q$ , broadband transducers. The results of the analysis are applied to the design of a CMUT front end in BIPOLAR-CMOS-DMOS Silicon-on-Insulator technology operating at 10-MHz center frequency. It comprises a low-power RX amplifier, a high-voltage Transmission/Reception switch, and a 100-V TX driver. Extensive electrical characterization, pulse-echo measurements, and imaging results are shown. Compared with previously reported CMUT front ends, this transceiver demonstrates the highest dynamic range and state-of-the-art noise performance with an RX amplifier power dissipation of 1 mW.

Keywords: front ends; frequency; analysis; feedback; cmut; amplifier

Journal Title: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.