Holographic projections of experimental ultrasound measurements generally use the angular spectrum method or Rayleigh integral, where the measured data are imposed as a Dirichlet boundary condition. In contrast, full-wave models,… Click to show full abstract
Holographic projections of experimental ultrasound measurements generally use the angular spectrum method or Rayleigh integral, where the measured data are imposed as a Dirichlet boundary condition. In contrast, full-wave models, which can account for more complex wave behavior, often use interior mass or velocity sources to introduce acoustic energy into the simulation. Here, a method to generate an equivalent interior source that reproduces the measurement data is proposed based on gradient-based optimization. The equivalent-source can then be used with full-wave models (for example, the open-source k-Wave toolbox) to compute holographic projections through complex media including nonlinearity and heterogeneous material properties. Numerical and experimental results using both time-domain and continuous-wave sources are used to demonstrate the accuracy of the approach.
               
Click one of the above tabs to view related content.