LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simulation-Based Characterization of Mechanical Parameters and Thickness of Homogeneous Plates Using Guided Waves

Photo by addyosmani from unsplash

Properties of isotropic plates in terms of material constants and thickness are characterized by making use of dispersion characteristics of propagating Lamb waves. A numerical model is inversely optimized in… Click to show full abstract

Properties of isotropic plates in terms of material constants and thickness are characterized by making use of dispersion characteristics of propagating Lamb waves. A numerical model is inversely optimized in order to match dispersion curves measured by laser vibrometry. This kind of material characterization has gained interest in recent research. Improvements in accuracy and efficiency of the optimization process are therefore important steps toward an industrial application of this technique to nondestructive testing and online monitoring. For this purpose, the use of a fast converging numerical model based on spectral collocation has been found to be well suited. Furthermore, we improved the signal-to-noise ratio by utilizing long-time broadband excitation signals for multimodal excitation of Lamb waves. The wavenumber spectrum up to 2.5 MHz is acquired by measurements with a laser-scanning vibrometer. In order to exploit the information contained in high-order modes, we present an algorithm to match the measured data to the calculated modes during the optimization process, leading to higher accuracy of the estimated model parameters. The characterization results are verified by comparison to measurements with a conventional ultrasonic method.

Keywords: characterization; simulation based; characterization mechanical; based characterization; parameters thickness; mechanical parameters

Journal Title: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.