LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unidirectional Shear Horizontal Wave Generation With Side-Shifted Periodic Permanent Magnets Electromagnetic Acoustic Transducer

Photo from wikipedia

Periodic permanent magnet (PPM) array electromagnetic acoustic transducers (EMATs) can efficiently generate and receive shear horizontal (SH) ultrasonic waves. Conventional PPM EMATs typically generate waves which simultaneously propagate both forward… Click to show full abstract

Periodic permanent magnet (PPM) array electromagnetic acoustic transducers (EMATs) can efficiently generate and receive shear horizontal (SH) ultrasonic waves. Conventional PPM EMATs typically generate waves which simultaneously propagate both forward and backward. This can complicate the received signals and make it difficult to locate the position of scatterers. Unidirectional generation of ultrasounds can be achieved if two ultrasonic sources are separated by a predefined distance and are excited with the proper delay. Relying on this principle, EMATs have been previously designed aiming to generate other modes of ultrasonic waves. The main challenge when extending this conception to an SH-wave EMAT is how to restrict each coil to its specific magnet array. We present the concept of a unidirectional SH EMAT consisting of two racetrack coils and two interlaced PPM arrays, that are slightly shifted sideways, in such a way that the generated wavefronts still properly interfere. The design was fabricated and experimentally evaluated in an aluminum plate generating the SH0 guided wave mode. The forward to backward generated wave ratio is above 20 dB and well agrees with finite element simulations.

Keywords: unidirectional shear; periodic permanent; electromagnetic acoustic; generation; wave; shear horizontal

Journal Title: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.