LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single Magnetic Particle Motion in Magnetomotive Ultrasound: An Analytical Model and Experimental Validation

Photo from wikipedia

Magnetomotive Ultrasound (MMUS) is an emerging imaging modality, in which magnetic nanoparticles (MNPs) are used as contrast agents. MNPs are driven by a time-varying magnetic force, and the resulting movement… Click to show full abstract

Magnetomotive Ultrasound (MMUS) is an emerging imaging modality, in which magnetic nanoparticles (MNPs) are used as contrast agents. MNPs are driven by a time-varying magnetic force, and the resulting movement of the surrounding tissue is detected with a signal processing algorithm. However, there is currently no analytical model to quantitatively predict this magnetically-induced displacement. Toward the goal of predicting motion due to forces on the distribution of MNPs, in this work, a model originally derived from the Navier–Stokes equation for the motion of a single magnetic particle subject to a magnetic gradient force is presented and validated. Displacement amplitudes for a spatially inhomogeneous and temporally sinusoidal force were measured as a function of force amplitude and Young’s modulus, and the predicted linear and inverse relationships were confirmed in gelatin phantoms, respectively, with three out of four data sets exhibiting ${R}^{{2}} \ge {0.88}$ . The mean absolute uncertainty between the predicted displacement magnitude and experimental results was 14%. These findings provide a means by which the performance of MMUS systems may be predicted to verify that systems are working to theoretical limits and to compare results across laboratories.

Keywords: magnetic particle; single magnetic; analytical model; model; motion; magnetomotive ultrasound

Journal Title: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.