LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cluster-Based Visual Abstraction for Multivariate Scatterplots

Photo from wikipedia

The use of scatterplots is an important method for multivariate data visualization. The point distribution on the scatterplot, along with variable values represented by each point, can help analyze underlying… Click to show full abstract

The use of scatterplots is an important method for multivariate data visualization. The point distribution on the scatterplot, along with variable values represented by each point, can help analyze underlying patterns in data. However, determining the multivariate data variation on a scatterplot generated using projection methods, such as multidimensional scaling, is difficult. Furthermore, the point distribution becomes unclear when the data scale is large and clutter problems occur. These conditions can significantly decrease the usability of scatterplots on multivariate data analysis. In this study, we present a cluster-based visual abstraction method to enhance the visualization of multivariate scatterplots. Our method leverages an adapted multilabel clustering method to provide abstractions of high quality for scatterplots. An image-based method is used to deal with large scale data problem. Furthermore, a suite of glyphs is designed to visualize the data at different levels of detail and support data exploration. The view coordination between the glyph-based visualization and the table lens can effectively enhance the multivariate data analysis. Through numerical evaluations for data abstraction quality, case studies and a user study, we demonstrate the effectiveness and usability of the proposed techniques for multivariate data analysis on scatterplots.

Keywords: visual abstraction; multivariate; cluster based; based visual; multivariate data

Journal Title: IEEE Transactions on Visualization and Computer Graphics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.