LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Event-Based Dynamic Graph Visualisation

Photo from wikipedia

Dynamic graph drawing algorithms take as input a series of timeslices that standard, force-directed algorithms can exploit to compute a layout. However, often dynamic graphs are expressed as a series… Click to show full abstract

Dynamic graph drawing algorithms take as input a series of timeslices that standard, force-directed algorithms can exploit to compute a layout. However, often dynamic graphs are expressed as a series of events where the nodes and edges have real coordinates along the time dimension that are not confined to discrete timeslices. Current techniques for dynamic graph drawing impose a set of timeslices on this event-based data in order to draw the dynamic graph, but it is unclear how many timeslices should be selected: too many timeslices slows the computation of the layout, while too few timeslices obscures important temporal features, such as causality. To address these limitations, we introduce a novel model for drawing event-based dynamic graphs and the first dynamic graph drawing algorithm, DynNoSlice, that is capable of drawing dynamic graphs in this model. DynNoSlice is an offline, force-directed algorithm that draws event-based, dynamic graphs in the space-time cube (2D+time). We also present a method to extract representative small multiples from the space-time cube. To demonstrate the advantages of our approach, DynNoSlice is compared with state-of-the-art timeslicing methods using a metrics-based experiment. Finally, we present case studies of event-based dynamic data visualised with the new model and algorithm.

Keywords: time; event based; based dynamic; dynamic graphs; dynamic graph

Journal Title: IEEE Transactions on Visualization and Computer Graphics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.