LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adaptive Optimization Algorithm for Resetting Techniques in Obstacle-ridden Environments

Photo from wikipedia

Redirected Walking (RDW) algorithms aim to impose several types of gains on users immersed in Virtual Reality and distort their walking paths in the real world, thus enabling them to… Click to show full abstract

Redirected Walking (RDW) algorithms aim to impose several types of gains on users immersed in Virtual Reality and distort their walking paths in the real world, thus enabling them to explore a larger space. Since collision with physical boundaries is inevitable, a reset strategy needs to be provided to allow users to reset when they hit the boundary. However, most reset strategies are based on simple heuristics by choosing a seemingly suitable solution, which may not perform well in practice. In this paper, we propose a novel optimization-based reset algorithm adaptive to different RDW algorithms. Inspired by the approach of finite element analysis, our algorithm splits the boundary of the physical world by a set of endpoints. Each endpoint is assigned a reset vector to represent the optimized reset direction when hitting the boundary. The reset vectors on the edge will be determined by the interpolation between two neighbouring endpoints. We conduct simulation-based experiments for three RDW algorithms with commonly used reset algorithms to compare with. The results demonstrate that the proposed algorithm significantly reduces the number of resets.

Keywords: optimization algorithm; adaptive optimization; algorithm resetting; resetting techniques; rdw algorithms; optimization

Journal Title: IEEE Transactions on Visualization and Computer Graphics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.