LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Marching Windows: Scalable Mesh Generation for Volumetric Data with Multiple Materials.

Photo from wikipedia

Volumetric data abounds in medical imaging and other fields. With the improved imaging quality and the increased resolution, volumetric datasets are getting so large that the existing tools have become… Click to show full abstract

Volumetric data abounds in medical imaging and other fields. With the improved imaging quality and the increased resolution, volumetric datasets are getting so large that the existing tools have become inadequate for processing and analyzing the data. Here we consider the problem of computing tetrahedral meshes to represent large volumetric datasets with labeled multiple materials, which are often encountered in medical imaging or microscopy optical slice tomography. Such tetrahedral meshes are a more compact and expressive geometric representation so are in demand for efficient visualization and simulation of the data, which are impossible if the original large volumetric data are used directly due to the large memory requirement. Existing methods for meshing volumetric data are not scalable for handling large datasets due to their sheer demand on excessively large run-time memory or failure to produce a tet-mesh that preserves the multi-material structure of the original volumetric data. In this paper we propose a novel approach, called Marching Windows, that uses a moving window and a disk-swap strategy to reduce the run-time memory footprint, devise a new scheme that guarantees to preserve the topological structure of the original dataset, and adopt an error-guided optimization technique to improve both geometric approximation error and mesh quality. Extensive experiments show that our method is capable of processing very large volumetric datasets beyond the capability of the existing methods and producing tetrahedral meshes of high quality.

Keywords: tetrahedral meshes; large volumetric; volumetric datasets; multiple materials; marching windows; volumetric data

Journal Title: IEEE transactions on visualization and computer graphics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.