Volumetric data abounds in medical imaging and other fields. With the improved imaging quality and the increased resolution, volumetric datasets are getting so large that the existing tools have become… Click to show full abstract
Volumetric data abounds in medical imaging and other fields. With the improved imaging quality and the increased resolution, volumetric datasets are getting so large that the existing tools have become inadequate for processing and analyzing the data. Here we consider the problem of computing tetrahedral meshes to represent large volumetric datasets with labeled multiple materials, which are often encountered in medical imaging or microscopy optical slice tomography. Such tetrahedral meshes are a more compact and expressive geometric representation so are in demand for efficient visualization and simulation of the data, which are impossible if the original large volumetric data are used directly due to the large memory requirement. Existing methods for meshing volumetric data are not scalable for handling large datasets due to their sheer demand on excessively large run-time memory or failure to produce a tet-mesh that preserves the multi-material structure of the original volumetric data. In this paper we propose a novel approach, called Marching Windows, that uses a moving window and a disk-swap strategy to reduce the run-time memory footprint, devise a new scheme that guarantees to preserve the topological structure of the original dataset, and adopt an error-guided optimization technique to improve both geometric approximation error and mesh quality. Extensive experiments show that our method is capable of processing very large volumetric datasets beyond the capability of the existing methods and producing tetrahedral meshes of high quality.
               
Click one of the above tabs to view related content.