LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Delay-Aware Load Balancing Over Multipath Wireless Networks

Photo from wikipedia

The ability of mobile devices to be connected to more than one radio node at the same time enables mobile devices to transmit and receive traffic to and from multiple… Click to show full abstract

The ability of mobile devices to be connected to more than one radio node at the same time enables mobile devices to transmit and receive traffic to and from multiple paths. This ability helps to increase the average mobile device data rate and to improve the network reliability. Load balancing among multiple paths become a key factor to avoid network congestion, nevertheless it requires efficient techniques to split traffic without adding more delay or generating too much packet reordering for delay-sensitive traffic. In this paper, we address two key issues in the context of uplink wireless mobile networks: 1) how to accurately split traffic among multiple paths and 2) how to minimize the end-to-end delay without increasing packet reordering. We propose delay-aware load balancing algorithm (DALBA), a novel strategy that splits traffic at the granularity of the packet. DALBA aims to minimize the splitting error (SE) and the end-to-end delay difference by effectively using all of the available paths. We analyze DALBA's performance through extensive simulations using H.264 video traffic. Numerical results demonstrate that DALBA outperforms previous algorithms in terms of SE, end-to-end delay and peak signal-to-noise ratio while keeping packet reordering to a suitable low value.

Keywords: traffic; delay aware; load balancing; delay; aware load

Journal Title: IEEE Transactions on Vehicular Technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.