Characterization of the delay profile of systems employing random linear network coding is important for the reliable provision of broadcast services. Previous studies focused on network coding over large finite… Click to show full abstract
Characterization of the delay profile of systems employing random linear network coding is important for the reliable provision of broadcast services. Previous studies focused on network coding over large finite fields or developed Markov chains to model the delay distribution but did not look at the effect of transmission deadlines on the delay. In this paper, we consider generations of source packets that are encoded and transmitted over the erasure broadcast channel. The transmission of packets associated with a generation is taken to be deadline constrained, that is, the transmitter drops a generation and proceeds to the next one when a predetermined deadline expires. Closed-form expressions for the average number of required packet transmissions per generation are obtained in terms of the generation size, the field size, the erasure probability, and the deadline choice. An upper bound on the average decoding delay, which is tighter than previous bounds found in the literature, is also derived. Analysis shows that the proposed framework can be used to fine-tune the system parameters and ascertain that neither insufficient nor excessive amounts of packets are sent over the broadcast channel.
               
Click one of the above tabs to view related content.