LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Achievable Rates of Full-Duplex Massive MIMO Relay Systems Over Rician Fading Channels

Photo from wikipedia

We analytically study the achievable rates of full-duplex massive multiple-input multiple-output (MIMO) relay systems over Rician fading channels. The decode-and-forward protocol is adopted at the relay station, where the channel… Click to show full abstract

We analytically study the achievable rates of full-duplex massive multiple-input multiple-output (MIMO) relay systems over Rician fading channels. The decode-and-forward protocol is adopted at the relay station, where the channel state information (CSI) is assumed to be imperfect. We demonstrate that the system bottleneck, self-interference (SI), can be significantly canceled by zero-forcing (ZF) processing at the relay station, which is equipped with massive receive and transmit arrays. Because no active SI cancellation is deployed at the relay station, there is no need for SI channel estimation. We derive an approximate closed-form achievable rate expression for ZF processing with statistical CSI. When the number of antennas of the transmit and receive arrays at the relay station is sufficiently large, the transmit powers of each source and the relay station can be significantly scaled down proportionally to the number of antennas. Since Rayleigh fading is a special case of Rician fading, the results in this paper hold for Rayleigh fading channels. The theoretical analysis is verified by the numerical results.

Keywords: relay station; relay; achievable rates; fading channels; rician fading

Journal Title: IEEE Transactions on Vehicular Technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.