LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

IEEE 802.11ad-Based Radar: An Approach to Joint Vehicular Communication-Radar System

Photo by winstonchen from unsplash

Millimeter-wave (mmWave) radar is widely used in vehicles for applications such as adaptive cruise control and collision avoidance. In this paper, we propose an IEEE 802.11ad-based radar for long-range radar… Click to show full abstract

Millimeter-wave (mmWave) radar is widely used in vehicles for applications such as adaptive cruise control and collision avoidance. In this paper, we propose an IEEE 802.11ad-based radar for long-range radar (LRR) applications at the 60 GHz unlicensed band. We exploit the preamble of a single-carrier physical layer frame, which consists of Golay complementary sequences with good correlation properties that make it suitable for radar. This system enables a joint waveform for automotive radar and a potential mmWave vehicular communication system based on the mmWave consumer wireless local area network standard, allowing hardware reuse. To formulate an integrated framework of vehicle-to-vehicle communication and LRR, we make typical assumptions for LRR applications, incorporating the full duplex radar operation. This new feature is motivated by the recent development of systems with sufficient isolation and self-interference cancellation. We develop single- and multi-frame radar receiver algorithms for target detection as well as range and velocity estimation for both single- and multi-target scenarios. Our proposed radar processing algorithms leverage channel estimation and time–frequency synchronization techniques used in a conventional IEEE 802.11ad receiver with minimal modifications. Analysis and simulations show that in a single-target scenario, a gigabits-per-second data rate is achieved simultaneously with cm-level range accuracy and cm/s-level velocity accuracy. The target vehicle is detected with a high probability (above 99.99 $\%$) at a low false alarm rate of 10 $^{-6}$ for an equivalent isotropically radiated power of 40 dBm up to a vehicle separation distance of about 200 m. The proposed IEEE 802.11ad-based radar meets the minimum accuracy/resolution requirement of range and velocity estimates for LRR applications.

Keywords: ieee 802; system; 802 11ad; based radar; radar; 11ad based

Journal Title: IEEE Transactions on Vehicular Technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.