LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mode Hopping for Anti-Jamming in Radio Vortex Wireless Communications

Photo from wikipedia

Frequency hopping (FH) has been widely used as a powerful technique for antijamming in wireless communications. However, as the wireless spectrum is becoming more and more crowded, it is very… Click to show full abstract

Frequency hopping (FH) has been widely used as a powerful technique for antijamming in wireless communications. However, as the wireless spectrum is becoming more and more crowded, it is very difficult to achieve efficient antijamming results with FH-based schemes. Orbital angular momentum (OAM), which provides the new angular/mode dimension for wireless communications, offers an intriguing way for antijamming. In this paper, we propose to use the orthogonality of OAM-modes for antijamming in wireless communications. In particular, we propose the mode hopping (MH) scheme for antijamming within the narrow frequency band. We derive the closed-form expression of bit error rate (BER) for multiple users scenario with our developed MH scheme. Our developed MH scheme can achieve the same antijamming results within the narrow frequency band as compared with the conventional wideband FH scheme. Furthermore, we propose mode-frequency hopping (MFH) scheme, which jointly uses our developed MH scheme and the conventional FH scheme to further decrease the BER for wireless communication. Numerical results are presented to show that the BER of our developed MH scheme within the narrow frequency band is the same with that of the conventional wideband FH scheme. Moreover, the BER of our developed MFH schemes is much smaller than that of the conventional FH schemes for wireless communications.

Keywords: frequency; wireless; wireless communications; mode hopping; developed scheme

Journal Title: IEEE Transactions on Vehicular Technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.