LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Broadcast Authentication in Latency-Critical Applications: On the Efficiency of IEEE 1609.2

Photo from wikipedia

Standards such as the American IEEE 1609, European ETSI ITS-G5, and Japanese ARIB STD-T109 aim to establish Cooperative Intelligent Transportation Systems (C-ITS) by enabling Vehicular Ad-Hoc Networks (VANETs). In VANETs,… Click to show full abstract

Standards such as the American IEEE 1609, European ETSI ITS-G5, and Japanese ARIB STD-T109 aim to establish Cooperative Intelligent Transportation Systems (C-ITS) by enabling Vehicular Ad-Hoc Networks (VANETs). In VANETs, vehicles communicate with other vehicles and roadside infrastructure to support latency-critical applications which increase driver awareness of the surroundings. This should result in improved safety and possibly optimizing traffic. However, to secure VANET communications against message manipulation or replaying, security standards such as IEEE 1609.2 and ETSI TS 103 097 are proposed. In this work, we implement the cryptographic primitives recommended in the IEEE 1609.2 standard to authenticate low latency safety critical messages. We evaluate the effect of the implementation using metrics such as CPU clock cycles per operation, average computation time in milliseconds, and message size in bits. We perform a simulation presenting a high-density highway scenario for the above mentioned C-ITS standards. For each standard, we evaluate the number of safety messages that can be successfully received within 100 ms latency. We show how and to what extent the authentication overhead of latency-critical messages may impact on driver safety. Under an assumed traffic scenario, we show that a crash is possible, as a result of the evaluated authentication delay. We show that the recommended algorithms with specific parameters can be a potential solution for low latency safety-critical applications in a large scale scenario.

Keywords: critical applications; latency critical; latency; ieee 1609; safety

Journal Title: IEEE Transactions on Vehicular Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.