LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Learning Based RF Fingerprint Identification Using Differential Constellation Trace Figure

Photo from wikipedia

This paper proposes a novel deep learning-based radio frequency fingerprint (RFF) identification method for internet of things (IoT) terminal authentications. Differential constellation trace figure (DCTF), a two-dimensional (2D) representation of… Click to show full abstract

This paper proposes a novel deep learning-based radio frequency fingerprint (RFF) identification method for internet of things (IoT) terminal authentications. Differential constellation trace figure (DCTF), a two-dimensional (2D) representation of differential relationship of signal time series, is utilized to extract RFF features without requiring any synchronization. A convolutional neural network (CNN) is then designed to identify different devices using DCTF features. Compared to the existing CNN-based RFF identification methods, the proposed DCTF-CNN possesses the merits of high identification accuracy, zero prior information and low complexity. Experimental results have demonstrated that the proposed DCTF-CNN can achieve an identification accuracy as high as 99.1% and 93.8% under SNR levels of 30 dB and 15 dB, respectively, when classifying 54 target ZigBee devices, which significantly outperforms the existing RFF identification methods.

Keywords: differential constellation; learning based; trace figure; constellation trace; identification; deep learning

Journal Title: IEEE Transactions on Vehicular Technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.