LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimal-Power Superposition Modulation for Scalable Video Broadcasting

Photo from wikipedia

To mitigate the burden of the tele-traffic imposed by video streaming, Scalable Video Coding (SVC) is invoked for mapping the video clips to multiple layers, which allows us to improve… Click to show full abstract

To mitigate the burden of the tele-traffic imposed by video streaming, Scalable Video Coding (SVC) is invoked for mapping the video clips to multiple layers, which allows us to improve the coverage quality. Although numerous non-orthogonal techniques have been conceived in the literature for maximizing the theoretical capacity relying on the idealized simplifying assumption of perfect channel coding. There is a paucity of practical finite-delay channel-coded solutions capable of mitigating the avalanche-like error proliferation routinely encountered in the face of hostile channels. Against this background, we propose SVC based Superposition Coding (SC) assisted video broadcasting, which curbs the error propagation introduced both by the inter-layer dependency and the Successive Interference Cancellation (SIC) required by the superimposed signal. Specifically, we formulate an Objective Function (OF) based on the average video quality across the Base Station's (BS) coverage area and then determine the optimal power scaling coefficients of each video layer using a bespoke Evolutionary Algorithm (EA). Our solution strikes a compelling compromise between the best possible video service provided for the cell-centre and the cell-edge users. Explicitly, our simulation results show that the optimal-power SC system guarantees a better compromise than its Time Division Multiplexing (TDM) and conventional QAM assisted counterparts, despite its reduced receiver complexity.

Keywords: video; optimal power; video broadcasting; scalable video; superposition

Journal Title: IEEE Transactions on Vehicular Technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.