LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Uplink Performance of MmWave-Fronthaul Cell-Free Massive MIMO Systems

Photo by jordanmcdonald from unsplash

Cell-free (CF) massive multiple-input multiple-output (mMIMO) is a promising candidate to support the requirements of the fifth-generation (5 G) and beyond networks. However, the capacity of the fronthaul network dramatically… Click to show full abstract

Cell-free (CF) massive multiple-input multiple-output (mMIMO) is a promising candidate to support the requirements of the fifth-generation (5 G) and beyond networks. However, the capacity of the fronthaul network dramatically influences its performance. While wired fronthaul links can be seen as the optimal choice, they may not be practically feasible. Exploiting the enormous bandwidth available in the millimeter-Wave (mmWave) band to support the fronthaul links paves the way to achieve the full potential of CF mMIMO systems. In this paper, we investigate the uplink (UL) performance of CF mMIMO systems supported by mmWave-fronthaul networks. Using tools from stochastic geometry, we derive analytical expressions for both the distribution of the provided fronthaul capacity and the average UL data rates. We show that although increasing the density of blockages degrades the average UL data rates, increasing the density of CPUs can limit such effect. Moreover, the obtained results reveal that the network deployment should be adjusted according to the available fronthaul bandwidth and the density of blockages. In particular, for a given fronthaul bandwidth, increasing the density of APs beyond a certain limit would not achieve further improvement in the UL data rates. Besides, increasing the number of antennas per AP may even cause a degradation in the system performance.

Keywords: uplink performance; mmwave fronthaul; cell free; free massive; fronthaul; performance

Journal Title: IEEE Transactions on Vehicular Technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.