LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-Accuracy and Adaptive Fault Diagnosis of High-Speed Train Bogie Using Dense-Squeeze Network

Photo by impulsq from unsplash

As one of the most important systems of high-speed train (HST), bogie system matters when it comes to the safety and reliability of HST operation. In order to strengthen feature… Click to show full abstract

As one of the most important systems of high-speed train (HST), bogie system matters when it comes to the safety and reliability of HST operation. In order to strengthen feature propagation and alleviate vanishing gradients problems in training deep-learning networks, a novel Dense-Squeeze Network based on one-dimensional convolutional neural networks (1D-CNN) is proposed for bogie fault diagnosis. On the one hand, dense blocks are capable of facilitating feature reuse and increasing the depth of feature propagation. On the other hand, the squeeze operation automatically measures the importance level of each feature channel, and then enhance the useful features and suppress the useless features for the current task. The experimental results tested by the HST model CRH380 A at different speeds verify the effectiveness of the proposed method, and the accuracy of fault diagnosis converges to 99.66%. Compared with other deep-learning-based methods, such as 1D-CNN, Long Short-Term Memory (LSTM) and DenseNet, the superiority of the proposed scheme is demonstrated clearly.

Keywords: bogie; dense; fault diagnosis; squeeze

Journal Title: IEEE Transactions on Vehicular Technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.