LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Residual Energy Maximization for Wireless Powered Mobile Edge Computing Systems With Mixed-Offloading

Photo from wikipedia

This paper studies a joint design of resource allocation and task offloading in a wireless powered mobile edge computing network involving different types of computation tasks. To deal with diverse… Click to show full abstract

This paper studies a joint design of resource allocation and task offloading in a wireless powered mobile edge computing network involving different types of computation tasks. To deal with diverse computation tasks, we explore a mixed-offloading paradigm to support the coexistence of partial and binary offloading modes. Specifically, devices harvest energy from an access point (AP) via wireless power transfer (WPT) and utilize the harvested energy to execute their computation tasks using partial or binary offloading. Based on a practical non-linear energy harvesting model, a residual energy maximization problem is formulated by jointly optimizing the transmit power of the AP, the offloading power of devices, the time allocation on WPT and task offloading, and the task partitions and the binary offloading decisions of devices, which turn out to be a non-convex mixed-integer non-linear programming problem. Thus, we develop an efficient dual-layer optimization algorithm by decomposing the optimization problem into an inner and outer layer structure that aims to obtain resource allocation and offloading decisions. Simulation results show that our proposed scheme achieves residual energy gains compared to existing schemes.

Keywords: mobile edge; powered mobile; energy; edge computing; residual energy; wireless powered

Journal Title: IEEE Transactions on Vehicular Technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.