LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Channel Modeling for Orbital Angular Momentum Based Underwater Wireless Optical Systems

Photo from wikipedia

The underwater turbulence channel is modelled and a unified statistical distribution is applied for characterizing orbital angular momentum (OAM) propagation in underwater wireless optical communication (UWOC) systems. Based on Monte-Carlo… Click to show full abstract

The underwater turbulence channel is modelled and a unified statistical distribution is applied for characterizing orbital angular momentum (OAM) propagation in underwater wireless optical communication (UWOC) systems. Based on Monte-Carlo simulations, the effects of turbulences are characterized by the multiple phase screens model considering both the coherence width and scintillation index. The phase screen samples are processed by the randomized spectral sampling discrete Fourier transform (DFT) technique. To validate the propagated field distribution, both the phase structure function and optical transfer function are derived and evaluated with the aid of ensemble-averaged results. The Generalized Gamma Distribution (GGD) enriched by an additional independent parameter is applied for modelling the probability density function (PDF) of both the reference-channels, fluctuating irradiance as well as the intermodal crosstalk irradiance between different OAM modes. Furthermore, based on the PDF, the performance metrics of both single input multiple output (SISO) and multiple input multiple output (MIMO) systems are analyzed, based on the average capacity, the bit-error rate and the outage probability.

Keywords: orbital angular; channel modeling; angular momentum; underwater wireless; wireless optical

Journal Title: IEEE Transactions on Vehicular Technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.