LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Scheduling for Massive MIMO With Hybrid Precoding Using Contextual Multi-Armed Bandits

Photo by britishlibrary from unsplash

In this work we study different scheduling problems in the downlink of a Frequency Division Duplex multiuser wireless system that employs a hybrid precoding antenna architecture for massive Multiple Input… Click to show full abstract

In this work we study different scheduling problems in the downlink of a Frequency Division Duplex multiuser wireless system that employs a hybrid precoding antenna architecture for massive Multiple Input Multiple Output. In this context, we propose a scheduling framework using Reinforcement Learning (RL) tools, namely Contextual Multi-Armed Bandits (CMAB), that can dynamically adapt themselves to solve three scheduling problems, which are: i) Maximum Throughput (MT); ii) Maximum Throughput with Fairness Guarantees (MTFG), and; iii) Maximum Throughput with QoS Guarantees (MTQG), which are well-known relevant problems. Before performing scheduling itself, we exploit statistical Channel State Information (CSI) to create clusters of spatially compatible User Equipmentss (UEss). This structure, combined with the usage of Zero-Forcing precoding, allows us to reduce the scheduler complexity by considering each cluster as an independent virtual RL scheduling agent. Next, we apply a new learning-based scheduler aiming to optimize the desired system performance metric. Moreover, only scheduled UEss need to feed back instantaneous equivalent CSI, which also reduces the signaling overhead of the proposal. The superiority of the proposed framework is demonstrated through numerical simulations in comparison with reference solutions.

Keywords: armed bandits; maximum throughput; contextual multi; hybrid precoding; multi armed

Journal Title: IEEE Transactions on Vehicular Technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.