LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Semi-Supervised Deep Adversarial Forest for Cross-Environment Localization

Photo by noaa from unsplash

Extracting channel state information (CSI) from WiFi signals is of proved high-effectiveness in locating human locations in a device-free manner. However, existing localization/positioning systems are mainly trained and deployed in… Click to show full abstract

Extracting channel state information (CSI) from WiFi signals is of proved high-effectiveness in locating human locations in a device-free manner. However, existing localization/positioning systems are mainly trained and deployed in a fixed environment, and thus they are likely to suffer from substantial performance declines when immigrating to new environments. In this paper, we address the fundamental problem of WiFi-based cross-environment indoor localization using a semi-supervised approach, in which we only have access to the annotations of the source environment while the data in the target environments are un-annotated. This problem is of high practical values in enabling a well-trained system to be scalable to new environments without tedious human annotations. To this end, a deep neural forest is introduced which unifies the ensemble learning with the representation learning functionalities from deep neural networks in an end-to-end trainable fashion. On top of that, an adversarial training strategy is further employed to learn environment-invariant feature representations for facilitating more robust localization. Extensive experiments on real-world datasets demonstrate the superiority of the proposed methods over state-of-the-art baselines. Compared with the best-performing baseline, our model excels with an average 12.7% relative improvement on all six evaluation settings.

Keywords: localization; environment; semi supervised; cross environment; supervised deep

Journal Title: IEEE Transactions on Vehicular Technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.