LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Coevolutionary Algorithm for Cooperative Platoon Formation of Connected and Automated Vehicles

Photo from wikipedia

This paper proposes a coevolutionary algorithm to optimize longitudinal trajectories of multiple vehicles with an energy-aware non-linear objective during the cooperative platoon formation process. In this work, an adaptive encoding… Click to show full abstract

This paper proposes a coevolutionary algorithm to optimize longitudinal trajectories of multiple vehicles with an energy-aware non-linear objective during the cooperative platoon formation process. In this work, an adaptive encoding scheme is adopted to represent trajectories as knot vectors of parametric cubic splines, and therefore the original problem is reformulated into a constrained numerical optimization version. The number of knots can be adjusted to trade-off between the shape flexibility and computation efficiency. Further, the proposed coevolutionary algorithm decomposes the initially high-dimensional problem into smaller subproblems, significantly reducing the complexity. A hybrid evolutionary algorithm is developed as an optimizer for subproblems. Additionally, a branch-and-bound strategy and a Tabu search component are integrated into the steepest ascent hill-climbing algorithm to speed up convergences within the local exploitation phase. Numerical experiments are conducted on extensive scenarios with different platooning sizes and initial separations. Experimental results indicate the superiority of the proposed approach in optimality and stability with reasonable sub-second computation time for real-life applications.

Keywords: cooperative platoon; platoon formation; algorithm cooperative; coevolutionary algorithm

Journal Title: IEEE Transactions on Vehicular Technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.