LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Joint Activity Detection and Channel Estimation for Massive IoT Access Based on Millimeter-Wave/Terahertz Multi-Panel Massive MIMO

Photo by hannahrdg from unsplash

The multi-panel array, as a state-of-the-art antenna-in-package technology, is very suitable for millimeter-wave (mmWave)/ terahertz (THz) systems, due to its low-cost deployment and scalable configuration. But in the context of… Click to show full abstract

The multi-panel array, as a state-of-the-art antenna-in-package technology, is very suitable for millimeter-wave (mmWave)/ terahertz (THz) systems, due to its low-cost deployment and scalable configuration. But in the context of non-uniform array structures it leads to intractable signal processing. Based on such an array structure at the base station, this paper investigates a joint active user detection (AUD) and channel estimation (CE) scheme based on compressive sensing (CS) for application to the massive Internet of Things (IoT). Specifically, by exploiting the structured sparsity of mmWave/THz massive IoT access channels, we firstly formulate the multi-panel massive multiple-input multiple-output (mMIMO)-based joint AUD and CE problem as a multiple measurement vector (MMV)-CS problem. Then, we harness the expectation maximization (EM) algorithm to learn the prior parameters (i.e., the noise variance and the sparsity ratio) and an orthogonal approximate message passing (OAMP)-EM-MMV algorithm is developed to solve this problem. Our simulation results verify the improved AUD and CE performance of the proposed scheme compared to conventional CS-based algorithms.

Keywords: channel estimation; massive iot; panel; millimeter wave; iot access; multi panel

Journal Title: IEEE Transactions on Vehicular Technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.