LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Joint Offloading Scheduling and Resource Allocation in Vehicular Edge Computing: A Two Layer Solution

Photo by theblowup from unsplash

Vehicular Edge Computing (VEC) is a promising paradigm for autonomous driving. It can reduce delay and energy consumption of tasks. The problem of joint task offloading scheduling and resource allocation… Click to show full abstract

Vehicular Edge Computing (VEC) is a promising paradigm for autonomous driving. It can reduce delay and energy consumption of tasks. The problem of joint task offloading scheduling and resource allocation in VEC is a challenge issue. In this paper, we investigate the problem of joint task offloading, task scheduling, and resource allocation in VEC, and the fast changing channel between a vehicle and an edge server. A target problem of joint considering task offloading scheduling, resource allocation and time-varying channel in VEC is formulated. The goal is to minimize the delay and energy consumption of tasks to guarantee the Quality of Service (QoS) of VEC. Constraints on the completion time, the energy consumption, and the computing capability are considered for each task. The resulting mixed integer optimization problem is decomposed into a two-layer optimization problem. In the upper layer, we use a Deep Q-Network (DQN) to solve the task offloading scheduling problem. In the lower level, the CPU frequency allocation is determined using the Gradient Descent (GD) method. Numerical results illustrate that the proposed algorithm can minimize the delay and energy consumption of VEC for different network parameter settings.

Keywords: problem; joint; resource allocation; scheduling resource; allocation; offloading scheduling

Journal Title: IEEE Transactions on Vehicular Technology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.