LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Learning Aided Joint Sensor Activation and Mobile Charging Vehicle Scheduling for Energy-Efficient WRSN-Based Industrial IoT

Photo from wikipedia

In this paper, the joint sensor activation and mobile charging vehicle scheduling for wireless rechargeable sensor network (WRSN) based industrial Internet of Things (IIoT) is studied. In the proposed framework,… Click to show full abstract

In this paper, the joint sensor activation and mobile charging vehicle scheduling for wireless rechargeable sensor network (WRSN) based industrial Internet of Things (IIoT) is studied. In the proposed framework, an optimal sensor set is selected to collaboratively execute a bundle of heterogeneous industrial tasks (e.g., production-line monitoring), meeting the quality-of-monitoring (QoM) of each individual task, and we consider that a mobile charging vehicle (MCV) is scheduled for recharging sensors before their charging deadlines, i.e., time instants of running out of their batteries, in order to prevent from any potential service interruptions (which is one of the key features of IIoT). Our goal is to jointly optimize the sensor activation and MCV charging scheduling for minimizing the system energy consumption, subject to tasks' QoM requirements, sensor charging deadlines and the energy capacity of the MCV. Unfortunately, solving this problem is nontrivial, because it involves solving two tightly coupled NP-hard optimization problems. To address this issue, we design a novel scheme integrating reinforcement learning and marginal product based approximation algorithms, and prove that it is not only computationally efficient but also theoretically bounded with a guaranteed performance in terms of the approximation ratio. Simulation results show the feasibility of the proposed scheme and demonstrate its superiority over counterparts.

Keywords: mobile charging; sensor; charging vehicle; sensor activation

Journal Title: IEEE Transactions on Vehicular Technology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.