LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic Event-Triggered Adaptive Formation With Disturbance Rejection for Marine Vehicles Under Unknown Model Dynamics

Photo by pabloheimplatz from unsplash

This article investigates the dynamic event-triggered adaptive neural coordinated disturbance rejection for marine vehicles with external disturbances as the sinusoidal superpositions with unknown frequencies, amplitudes and phases. The vehicle movement… Click to show full abstract

This article investigates the dynamic event-triggered adaptive neural coordinated disturbance rejection for marine vehicles with external disturbances as the sinusoidal superpositions with unknown frequencies, amplitudes and phases. The vehicle movement mathematical models are transformed into parameterized expressions with the neural networks approximating nonlinear dynamics. The parametric exogenous systems are exploited to express external disturbances, which are converted into the linear canonical models with coordinated changes. The adaptive technique together with disturbance filters realize the disturbance estimation and rejection. By using the vectorial backstepping, the dynamic event-triggered adaptive neural coordinated disturbance rejection controller is derived with the dynamic event-triggering conditions being incorporated to reduce execution frequencies of vehicle's propulsion systems. The coordinated formation control can be achieved with the closed-loop semi-global stability. The dynamic event-triggered adaptive disturbance rejection scheme achieves the disturbance estimation and cancellation without requiring the a priori marine vehicle's model dynamics. Illustrative simulations and comparisons validate the proposed scheme.

Keywords: disturbance; event triggered; triggered adaptive; dynamic event; rejection

Journal Title: IEEE Transactions on Vehicular Technology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.