Banded linear systems arise in many communication scenarios, e.g., those involving inter-carrier interference and inter-symbol interference. Motivated by recent advances in deep learning, we propose to design a high-accuracy low-complexity… Click to show full abstract
Banded linear systems arise in many communication scenarios, e.g., those involving inter-carrier interference and inter-symbol interference. Motivated by recent advances in deep learning, we propose to design a high-accuracy low-complexity signal detector for banded linear systems based on convolutional neural networks (CNNs). We develop a novel CNN-based detector by utilizing the banded structure of the channel matrix. Specifically, the proposed CNN-based detector consists of three modules: the input preprocessing module; the CNN module; and the output postprocessing module. With such an architecture, the proposed CNN-based detector is adaptive to different system sizes, and can overcome the curse of dimensionality, which is a ubiquitous challenge in deep learning. Through extensive numerical experiments, we demonstrate that the proposed CNN-based detector outperforms conventional deep neural networks and existing model-based detectors in both accuracy and computational time. Moreover, we show that the CNN is flexible for systems with large sizes or wide bands. We also show that the proposed CNN-based detector can be easily extended to near-banded systems such as doubly selective orthogonal frequency division multiplexing (OFDM) systems and 2-D magnetic recording (TDMR) systems, in which the channel matrices do not have a strictly banded structure.
               
Click one of the above tabs to view related content.