LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimization for Full-Duplex Rotary-Wing UAV-Enabled Wireless-Powered IoT Networks

Photo from wikipedia

This paper investigates the rotary-wing unmanned aerial vehicle (UAV)-enabled full-duplex wireless-powered Internet-of-Things (IoT) networks, in which a rotary-wing UAV equipped with a full-duplex hybrid access point (HAP) serves multiple sparsely-distributed… Click to show full abstract

This paper investigates the rotary-wing unmanned aerial vehicle (UAV)-enabled full-duplex wireless-powered Internet-of-Things (IoT) networks, in which a rotary-wing UAV equipped with a full-duplex hybrid access point (HAP) serves multiple sparsely-distributed energy-constrained IoT sensors. The UAV broadcasts energy when flying and hovering, and collects information only when hovering. It is assumed that the transmission range of the UAV is limited and the sensors are sparsely distributed in the IoT network. Under these practical assumptions, we formulate three optimization problems: a sum-throughput maximization (STM) problem, a total-time minimization (TTM) problem, and a total-energy minimization (TEM) problem. For the TEM problem, we further take into consideration that the power needed for hovering, flying, and transmitting are different. For the STM, TTM and TEM problems, optimal solutions are obtained. Finally, numerical results show that the performance achieved by the proposed optimal time allocation schemes outperform existing time allocation schemes. It is also observed that i) the time allocation between hovering and flying time has different trends for different goals; ii) there is an optimal UAV transmit power range that minimizes the energy consumed by the UAV during the entire cycle.

Keywords: uav enabled; full duplex; time; rotary wing

Journal Title: IEEE Transactions on Wireless Communications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.