The network control plays a vital role in the mega satellite constellation (MSC) to coordinate massive network nodes to ensure the effectiveness and reliability of operations and services for future… Click to show full abstract
The network control plays a vital role in the mega satellite constellation (MSC) to coordinate massive network nodes to ensure the effectiveness and reliability of operations and services for future space wireless communications networks. One of the critical issues in satellite network control is how to design an optimal network control structure (ONCS) by configuring the least number of controllers to achieve efficient control interaction within a limited number of hops. Considering the wide coverage, rising capacity, and no geographical constraints of space platforms, this paper contributes to designing the ONCS by constructing an optimal space control network (SCN) to improve the temporal effectiveness of network control. Specifically, we formulate the optimal SCN construction problem from the perspective of satellite coverage factors, and apply geometric topology analysis to derive both the conditions for constructing the optimal SCN and the formulaic conclusions for SCN and MSC configurations (i.e., scale and structure). From numerical results, we investigate the tradeoff between network scale, the number of controllers, and control delays in several satellite network control scenarios, to provide guidelines for the MSC control. We also design the optimal SCN for an existing MSC system to demonstrate the effectiveness of the proposed ONCS.
               
Click one of the above tabs to view related content.