LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Resource Configuration for Full-Duplex-Aided Multiple-Access Edge Computation Offloading

Photo by chrisliverani from unsplash

Multiple-access edge computation offloading (MECO) systems have been highlighted as a solution for extending the battery life and computation capability of mobile devices. However, in scenarios where information data and… Click to show full abstract

Multiple-access edge computation offloading (MECO) systems have been highlighted as a solution for extending the battery life and computation capability of mobile devices. However, in scenarios where information data and computation offloading (CO) data coexist, CO users and information users affect each other. It means that the communication resources for information data transmission are inevitably reduced by the communication resources allocated for CO in the conventional half-duplex (HD) based systems. Hence, improving the spectral efficiency of MECO systems in coexistence scenarios is essential, and we investigate a full-duplex (FD)-aided MECO (FD-MECO) system. A step-wise resource configuration is proposed to improve the performance of computation offloading under the information data rate constraint. The main idea is to improve spectral efficiency by maximizing the opportunity of operating in FD mode. By comparing all the communication phases in FD-MECO systems, the proposed resource configuration maximizes the amount of delivered CO data while guaranteeing the required information data rate. The simulation results show that FD-MECO systems with the proposed resource configuration always outperform HD-MECO systems.

Keywords: computation; resource configuration; computation offloading; meco systems

Journal Title: IEEE Transactions on Wireless Communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.