Performance analysis of the Bundle Protocol (BP) in Delay/ disruption-Tolerant Networks (DTN) has gained much interest. The analytic work of the average operation time (AOT) in BP, for different channel… Click to show full abstract
Performance analysis of the Bundle Protocol (BP) in Delay/ disruption-Tolerant Networks (DTN) has gained much interest. The analytic work of the average operation time (AOT) in BP, for different channel conditions and system parameters, though critical to understanding performance and designing system, is still incomplete. Existing results, such as the average file delivery time (AFDT), provide reasonably close estimates in some cases but exhibit large discrepancies in other cases. In this paper, we provide a holistic probabilistic analysis of the BP process, particularly in the number of error bundles and the position of the last error bundle in each and the last rounds of transmission. We provide, for the first time, an exact solution for the AOT of the BP process. The derivation works for both symmetric and asymmetric channels and is in general for any given maximum number of transmissions rounds. When the unlimited number of transmission rounds is considered, AOT becomes AFDT. The results are further utilized to select the optimal bundle size that gives the minimum file delivery time. Validation via simulations and comparison with existing work are also provided.
               
Click one of the above tabs to view related content.