LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Impact of Coherence Diversity on MIMO Relays

Photo by portablepeopleproductions from unsplash

This paper studies MIMO relays with non-identical link coherence times, a frequently occurring condition when, e.g., the nodes in the relay channel do not all have the same mobility, or… Click to show full abstract

This paper studies MIMO relays with non-identical link coherence times, a frequently occurring condition when, e.g., the nodes in the relay channel do not all have the same mobility, or the scatterers around some nodes have different mobility compared with those around other nodes. Despite its practical relevance, this condition, known as coherence diversity, has not been studied in the relay channel. This paper studies the performance of MIMO relays and proposes efficient transmission strategies under coherence diversity. Since coherence times have a prominent impact on channel training, we do not assume channel state is available to the decoder for free; all channel training resources are accounted for in the calculations. A product superposition technique is employed at the source which allows a more efficient usage of degrees of freedom when the relay and the destination have different training requirements. Varying configurations of coherence times are studied. The interesting case where the different link coherence intervals are not a multiple of each other, and therefore the coherence intervals do not align, is studied. Relay scheduling is combined with the product superposition to obtain further gains in degrees of freedom. The impact of coherence diversity is further studied in the presence of multiple parallel relays.

Keywords: impact coherence; coherence; mimo relays; coherence diversity

Journal Title: IEEE Transactions on Wireless Communications
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.